Name:

Notations:

 \mathbb{N} is the set of all natural numbers, $\{1, 2, 3, 4, \cdots\}$, \mathbb{Z} is the set of all integers, $\{\cdots, -2, -1, 0, 1, 2, \cdots\}$. \mathbb{R} is the set of all real numbers.

- 1. What are the elements of the following sets? Describe explicitly.
 - (a) The set of people with 10 heads.
 - (b) $A = \{n \in \mathbb{N} : n \text{ is an even prime number}\}$
 - (c) $B_1 = \{x \in \mathbb{N} : x^2 = 4\}$
 - (d) $B_2 = \{x \in \mathbb{Z} : x^2 = 4\}$
 - (e) $\{x \in \mathbb{R} : x < 0\}.$
 - (f) $\{x \in \mathbb{R} : x(x-1)(x-2) < 0\}.$
- 2. What must you do to prove that $\mathbb{N} \subsetneq \mathbb{Z}$?
- 3. Are the following sets equal?
 - (a) $A = \{h : h \text{ is human being with 5 legs}\}, B = \{x \in \mathbb{R} : x^2 + 1 = 0\}$
 - (b) $C = \{7m + 1 : m \in \mathbb{Z}\}, D = \{7n 6 : n \in \mathbb{Z}\}.$
- 4.* Let $A = \{x \in \mathbb{R} : x^2 > x + 6\}$ and $B = \{x \in \mathbb{R} : x > 3\}$. Which of the following is true? (i) $A \subseteq B$, (ii) $B \subseteq A$?
- 5. Prove that $\emptyset \subset A$, for any set A. What is $A \cup \emptyset$? $A \cap \emptyset$?
- 6. Let $A = \{\emptyset, \{\emptyset\}\}$. Is $\emptyset \in A$? How about $\{\emptyset\}$? Is $\{\emptyset\} \subset A$? Lastly, is $\{\{\emptyset\}\} \in A$ or $\{\{\emptyset\}\} \subset A$?
- 7. Let S be a subset of \mathbb{N} with the property that if a positive integer $n \in S$, then $n + 1 \in S$. Describe all such such subsets of S.
- 8.* Let $\Omega = \mathbb{N}$, $A = \{1, 2, 3, 4\}$, and $B = \{3, 4, 5, 6\}$. What is $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, and $A \Delta B$?
- 9. Prove that $A \cap B \subseteq B$. Prove that $A \cap B = B$ if and only if $B \subseteq A$.
- 10.* Prove that $A \cup B \supseteq B$. Prove that $A \cup B = B$ if and only if $B \supseteq A$.
- 11. What is $(A^c)^c$?
- 12. Prove $A \setminus B = A \cap B^c$. How about $(A \setminus B)^c$?
- 13. De Morgan's Laws:
 - (a) $(A \cup B)^c = A^c \cap B^c$.
 - (b) $(A \cap B)^c = ?$