Notations:

 \mathbb{N} is the set of all natural numbers, $\{1, 2, 3, 4, \dots\}$, \mathbb{Z} is the set of all integers, $\{\dots, -2, -1, 0, 1, 2, \dots\}$. \mathbb{R} is the set of all real numbers.

- 1. When is $A \times B = \emptyset$?
- 2. Let $X = \mathbb{R} = Y$. Visualize the cross-products $A \times B$ and $B \times A$ where $A \subseteq X$ and $B \subseteq Y$ are given below.

(a) A = [-1, 1], B = [0, 1](b) A = [-1, 1), B = (0, 1](c) $A = [-1, 0) \cup (0, 1), B =$ (d) $A = \{1\}, B = \mathbb{R}$ (e) $A = \mathbb{Z}, B = \mathbb{R}$

- 3. If *A* has *m* elements and *B* has *n* elements, how many elements does $A \times B$ have?
- 4. What's wrong with the following proof that for any sets A, B, C, and D, $(A \cup C) \times (B \cup D) \subseteq (A \times B) \cup (C \times D)$?

Proof. Suppose $(x, y) \in (A \cup C) \times (B \cup D)$. Then $x \in A \cup C$ and $y \in B \cup D$, so either $x \in A$ or $x \in C$, and either $y \in B$ or $y \in D$. We consider these cases separately.

- Case 1 $x \in A$ and $y \in B$. Then $(x, y) \in A \times B$.
- Case 2. $x \in C$ and $y \in D$. Then $(x, y) \in C \times D$.

Thus, either $(x, y) \in A \times B$ or $(x, y) \in C \times D$, so $(x, y) \in (A \times B) \cup (C \times D)$.

- 5. Suppose *A*, *B*, *C*, and *D* are sets. Prove the following:
 - (a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (c) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$
 - (d) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$
- 6. Given a map $f : X \to Y$, think of a "natural" subset of $X \times Y$ associated with f.
- 7. Given a subset $A \times B \subset X \times Y$ and elements $(x_1, y_1), (x_2, y_2) \in A \times B$, can you think of a few other (possibly new) elements in $A \times B$?
- 8. Let $C = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$. Then $C \subseteq \mathbb{R}^2$ and it is not of the form $A \times B$ for any subsets $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$.
- 9. Let C be the set of all cities, N the set of all countries, and let $L = \{(c, n) \in C \times N :$ the city c is in the country n $\}$. Is L a function from C to N?
- 10. Let P be the set of all people, and let $C = \{(p,q) \in P \times P : \text{ the person } p \text{ is a parent of the person } q\}$. Is C a function from P to P?

- 11. Let P be the set of all people, and let $D = \{(p, x) \in P \times \mathcal{P}(P) : x = \text{the set of all children of } p\}$. Is D a function from P to $\mathcal{P}(P)$?
- 12. Let W be the set of all words of English, and let A be the set of all letters of the alphabet. Let $f = \{(w, a) \in W \times A : \text{the letter a occurs in the word w}\}$, and let $g = \{(w, a) \in W \times A : \text{the letter a is the first letter of the word w}\}$. Is f a function from W to A? How about g?